Calculating the dissociation of TEOS

Oliver Bramley 16.10.2024

TEOS

TEOS is a precursor used for depositing layers of SiO₂
 Mechanism for its dissociation is not fully understood

General Motivation

O Utilise direct dynamics simulations to better understand the dissociation process

quantemol

- O Understand how and which bonds break
- Predict intermediate and final products
- O Design molecules starting with desired products

Ab initio Multiple Cloning

- Method developed at the University of Leeds by Dmitry Shalashilin and Dmitry Makhov
- Brings together *ab initio* Multiple Spawning (AIMS) and
 Multiconfigurational
 Ehrenfest (MCE)
- Used to model
 photoexcitation of singlet
 states

quantemol

An ab initio multiple cloning approach for the simulation of photoinduced dynamics in conjugated molecules <u>Phys. Chem. Chem. Phys.</u>, 2018, **20**, 17762-17772

Ehrenfest Trajectories and Cloning

Ehrenfest Trajectories and Cloning

Potential energy surface

Ehrenfest Trajectories and Cloning

State 1

🔄 quantemol

Add a second potential energy surface

🤹 quantemol

🔄 quantemol

Construct a wavefunction

Ehrenfest Trajectories and Cloning

Construct a time-dependent wavefunction

🤹 quantemol

 $|\psi(t)\rangle = (a_1(t)|1\rangle + a_2(t)|2\rangle)|z(t)\rangle$

$|z\rangle$ is a gaussian wave packet

🤹 quant*e*mol

 $|\psi(t)\rangle = (a_1(t)|1\rangle + a_2(t)|2\rangle)|z(t)\rangle$

Ehrenfest trajectories follow the path of the average potential energy

🤹 quant*e*mol

 $|\psi(t)\rangle = (a_1(t)|1\rangle + a_2(t)|2\rangle)|z(t)\rangle$

Ehrenfest trajectories follow the path of the average potential energy

🔄 quantemol

Cloning splits the wave function to combat the weakness of using Ehrenfest trajectories

Toward fully quantum modelling of ultrafast photodissociation imaging experiments. Treating tunnelling in the ab initio multiple cloning approach <u>Faraday Discuss.</u>, 2016, **194**, 81-94

Method Overview

- Calculate electronic excitation cross sections using QEC
- AIMC method used to propagate an ensemble of trajectories
- Time Dependent Density
 Functional Theory used to
 calculate electronic energy

quantemol

Cross sections for C_3H_2F_6

Electron impact electronic excitation cross sections for $C_3H_2F_6$ calculated using QEC

🤹 quantemol

Lowest Triplet State

75% of the population is in the lower triplet state within a few femtoseconds So proceed to use just the lowest triplet

state

Dissociation of Hydrofluorocarbon Molecules after Electron Impact in Plasma J. Phys. Chem. Lett. 2024, 15, 12, 3404–3411

🤹 quantemol

Dissociation of Hydrofluorocarbons

Comparison

i-C₄H₃F₇O

As yet unpublished results from Ryan Brook

PPVE, $n-C_4H_3F_7O$ and $C_4H_2F_7OH$ all have approximately the same number of bonds broken after 500fs

🔄 quant*e*mol

PPVE

- Bond breaking starts comparatively slowly in PPVE due to lack of Hydrogen
- Perhaps surprisingly the 70% of the C=C bond breaks

PPVE C-F Bonds

F

 Fluorines furthest away from the C-O and C=C bonds break least readily

PPVE C-F Bonds

 Adjacent to C=C bond and close proximity to C-O still makes up small proportion of C-F bonds broken

PPVE C-F Bonds

Majority of C-F bonds broken are adjacent to the C-O and C=C bonds

- Comparing bond breaking in isomers we can pinpoint which atoms affect bond breaking
- Can see the importance of proximity to oxygen
- Same molecular formula but different structure

- Comparing bond breaking in isomers we can pinpoint which atoms affect bond breaking
- Can see the importance of proximity to oxygen
- O Three different Fluorine environments

- Comparing bond breaking in isomers we can pinpoint which atoms affect bond breaking
- Can see the importance of proximity to oxygen
- O Three different Fluorine environments

- Comparing bond breaking in isomers we can pinpoint which atoms affect bond breaking
- Can see the importance of proximity to oxygen
- O Three different Fluorine environments

- Comparing bond breaking in isomers we can pinpoint which atoms affect bond breaking
- Can see the importance of proximity to oxygen
- Four different carbon environments

- Comparing bond breaking in isomers we can pinpoint which atoms affect bond breaking
- Can see the importance of proximity to oxygen
- Two different Fluorine environments

- Comparing bond breaking in isomers we can pinpoint which atoms affect bond breaking
- Can see the importance of proximity to oxygen
- Two different Fluorine environments

- Comparing bond breaking in isomers we can pinpoint which atoms affect bond breaking
- Can see the importance of proximity to oxygen
- O Three different Carbon environments

i-C4H3F7O vs n-C4H3F7O isomer comparison

Bond Type	i-C ₄ H ₃ F ₇ O (%)	n-C ₄ H ₃ F ₇ O (%)
C-F	7.96	4.04
C-C	33.00	34.38
C-H	34.92	28.50
C-0	43.12	34.75

Final proportion of bonds broken for each isomer

i-C₄H₃F₇O vs n-C₄H₃F₇O isomer comparison

ACS Sustainable Chem. Eng. 2022, 10, 10537-10546

- I-C₄H₃F₇O has a great number of C-F bonds broken due to the proximity of the oxygen to more Fluorine atoms
- O The oxygen in the n-C₄H₃F₇O is mostly affecting closest carbon that contains C-F bonds.
- Oxygen position in $i-C_4H_3F_7O$ also gives a sharper peak

quantemol

C4H2F7OH

90% of all O-H bonds are broken

F

- O Which is ⅓ of all bond breaking events
- C₄H₂F₇OH has the lowest
 C-F bond breaking due to the 'hydrogen buffer' between the oxygen and the closest C-F bonds.

Fragmentation rules

- Oxygen atom position is important due to hypothesised localisation
- Functional group of the oxygen atom is also important, e.g. an alcohol can be used to limit C-O breaking

quant*e*mol

- O Hydrogen atoms behaviour consistently ejected quickly
- Ouble carbon-carbon bonds initially dissociate more rapidly than single carbon-carbon bonds
- Proximity effect to carbon-carbon double bond and oxygen
 atoms is cumulative

TEOS Electronic Excitation Cross Section

Cross section calculated using QEC

TEOS Electronic Excitation Cross Section

Triplet states dominate cross section

TEOS 5000K

н Н H - C - H н Н

H - C - H

Н

🔄 quant*e*mol

TEOS 5000K

Hydrogens closer to oxygen are lost faster and in greater numbers than terminal hydrogens

🔄 quantemol

Most Common Final Fragments TEOS

Fraction	Count	Fraction	Count	Fraction	Count
H1	573	C4H10O2Si1	22	C2H5O2Si1	10
C2H4O1	144	C2H6O3Si1	21	C1H2	10
C2H4	131	C7H16O4Si1	21	C2H3O1	9
C1H3	107	C2H2	19	C2H5O1	9
C2H5	81	C6H14O4Si1	19	C2H2O1	8
C4H10O3Si1	66	C2H3	17	C7H15O4Si1	8
C8H19O4Si1	60	C1H4	16	C2H6O1	8
H2	58	C6H15O4Si1	12	C8H17O4Si1	6
C1H2O1	43	C6H15O3Si1	12	C6H16O4Si1	6
C8H18O4Si1	38	C4H8O3Si1	10	C4H9O3Si1	5

Most Common Final Fragments TEOS

Fraction	Count	Fraction	Count	Fraction	Count
OC ₂ H ₄	144	Si(OC ₂ H ₅) ₃ OCH	21	OC ₂ H ₃	9
C ₂ H ₄	131	C ₂ H ₂	19	OC ₂ H ₅	9
CH ₃	107	$Si(OC_2H_5)_2(OCH_2)_2$	19	OC_2H_2	8
C_2H_5	81	C ₂ H ₃	17	Si(OC ₂ H ₅) ₃ C	8
Si(OC ₂ H ₅) ₂ OH	66	CH ₄	16	OC ₂ H ₆	8
$Si(OC_2H_5)_3OC_2H_4$	60	Si(OC ₂ H ₅) ₃ O	12	$Si(OC_2H_5)_3OC_2H_2$	6
OCH ₂	43	Si(OC ₂ H ₅) ₃ O	12	Si(OC ₂ H ₅) ₃ OH	6
$Si(OC_2H_5)_2(OC_2H_4)_2$	38	Si(OCH ₂) ₂ OC ₂ H ₄	10	Si(OC ₂ H ₅)(OCH ₂) ₂	5
Si(OC ₂ H ₅) ₂	22	Si(OCH ₂) ₂ H	10		
Si(OC ₂ H ₅)(OH)O	21	CH ₂	10		

Fragments

Many of the final fragments agree with products calculated using DFT calculations based on experimental results

guantemol

Computational study on silicon oxide plasma enhanced chemical vapor deposition (PECVD) process using tetraethoxysilane/oxygen/argon/Helium Hu Li et al 2019 Jpn. J. Appl. Phys. 58 SEED06

Conclusions

Triplet dissociation can be simulated
 Find most common dissociation pathways
 Development of rules for fragmentation

quantemol

Future Work

Short Term

- Optimise fragment calculation
- O Introduce fragmentation during propagation
- O Consider other triplet states of TEOS

Medium Term

- GPU acceleration
- Machine learning to generate electronic structure

Long Term

 Use the method to generate large data sets so fragmentation rules can be used for generative AI

quantemol

People

Dmitry Shalashilin Dmitry Makhov Ryan Brook

🔅 quantemol

UNIVERSITY OF LEEDS

