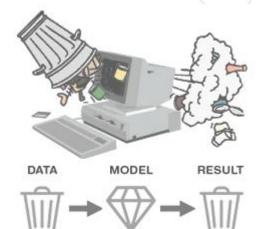
Towards completing chemistry sets for plasma simulations

Sebastian Mohr, Greg Armstrong, Kateryna Lemishko Alec Owens, Wei Wu, Jonathan Tennyson, Dmitry Makhov, HsiaoHan Chuang, Dmitry Shalashilin

69th AVS Symposium, Portland, Oregon 07/11/2023

Introduction


Simulations are widely used in both academic and industrial settings to gain insight into and optimize plasma processes.

The success of such investigations hinges on having good data for the chemical processes in form of:

- Cross sections
- Rate coefficients
- Coefficients for surface processes

Data can be found in individual publications or databases such LXCat, UMIST,KIDA,NFRI,NIFS, or Quantemol-DB.

🔄 quantemol

Constructing a set via QDB

To construct a complete set, we offer our chemistry generator which automatically finds all relevant gas phase reactions for a specified gas mixture. The resulting sets might have some missing data, among them:

- Radiative processes
- Unknown heavy particle
- reactions
- Unknown electron collisions

-								actions are se							
72 spec	ies are sele	.ted.	Name	Sticking Coef	ficient Return Coeff	ficient Return Species ^	813 16	actions are se	lected.	Reaction			D	E	
v	Delete	Properties	Ar	0.0000	0.0000	¢ Ar v	v	Delete	Info	0+0->e-+02	2.30e-10	0.00		0.00	0.0
v	Delete	Properties	Ar+	1.0000	\$ 1.0000	¢ Ar v	V	Delete	Info	e-+O2>O+O-	1.39e-09	-1.3	7	6.77	0.0
V	Delete	Properties	Ar2+	1.0000	2.0000	¢ Ar v	V	Delete	Info	e- + C2F5 > CF3- + CF2	5.34e-09	-1.4	4	3.81	0.0
v	Delete	Properties	Ar3+	1.0000	\$ 3.0000	t Ar 👻	V	Delete	Info	Ar + Ar+ > Ar + Ar+	5.66e-10	0.50	•	0.00	0.0
v	Delete	Properties	Ar[**]	1.0000	2 1.0000	\$ Ar ·	v	Delete	Info	e- + Ar2+ > Ar + Ar[*]	2.20e-05	-0.6	4	0.00	0.0
v	Delete	Properties	Ar[*]	1.0000	\$ 1.0000	0 Ar · ·	v	Delete	Info	e- + Ar > e- + Ar	3.67e-07	-0.1	1	3.49	0.0
v	Delete	Properties	Ar[3*]	1.0000	\$ 1.0000	‡ Ar · · ·	v	Delete	Info	e- + Ar > e- + Ar[*]	1.40e-09	0.44	6. C	11.73	11
v	Delete	Properties	c	0.0000	0.0000	¢ c • •	٠.								
✓ Auto	-Add Reacti	ons				Add Custom Species								Backward	
						Add QDB Species		o-Update Spe						A	Add Reac
Filterin	9							w only selecte	ed reactions						
🗌 sh	ow only sele	cted species					Filter	by Type		Filter by Reactants			Filter by Proc		
V Gr	ound State I	leutrals								Has Reactants			Has Proc	lucts	
V Ex	cited States									Ar Ar+	Ar+				
V Po	sitive lons						V si	how electron o	ollisions	Ar2+ Ar3+			Ar2+ Ar3+		
V Negative Ions									Ar[**] Ar[*]			Ar[**] Ar[*]			
Excited States							✓ show heavy particle collisions C+					Ar[3*]			
Use pooled states										· 1			C C+		
	e distinct st							c- (2			- - -		C- (2)		
0.05												121			
✓ Enabl	e Consisten	y Checks													
Some la	on-lon Recor	nbination re	actions are missing!	Show											
Some s	ymmetric ch	arge exchan	ge reactions are mis	sing! Show											
The C.			and he are the	abase sensities											
			insumed by any gas se or at surfaces		hannels in oas phase i	or at surfaces C4F7 : No loss chann	els in das i	phase or at sur	faces C	3+ : Consumed only at sur	faces C3E6+:	Consumed	only at surfa	ces	
	toss channe	is in gas pha	ces C4E8+: Consum	red only at surface	s COF2+: Consumed	I only at surfaces C4F8-: Consumed or	ly at surfa	ices CF3[v=*]	: Consumer	d only at surfaces	Taces CSP0+:	consumed	i onty ac surra	ces	
C3:No C4F7+:	Consumed														

Filling the gap Radiative Processes

Radiative Databases

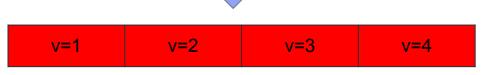
TOTAL S Levels 58 2s²2p³nt 2s2nfm

The NIST atomic spectra database gives access to radiative transition for atoms. States are finely resolved 120 000 transitions are stored in this database.

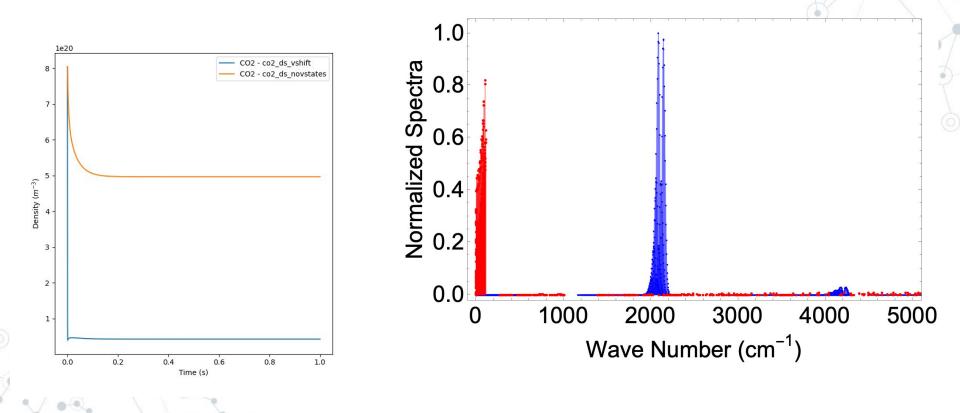
quantemol

https://www.nist.gov/pml/atomic-spectra-database

The ExoMol database gives access to radiative transitions for molecules. States again are again finely resolved leading to over 1 trillion transitions for currently 85 molecules.


LiDb - Lifetime Database

LiDb offers data from NIST and ExoMol processed for more convenient use in plasma modelling by:


- Lumping the finely resolved a) states, e.g. neglecting rotational resolution for vibrational states.
- Providing total lifetimes as well b) partial lifetimes/branching ratios to specific target states.
- Provide an API for easy access and C) integration into QDB.

v=1	v=2	v=3	v=4
J=1	J=1	J=1	J=1
J=2	J=2	J=2	J=2
J=3	J=3	J=3	J=3
J=4	J=4	J=4	J=4

Use case: CO₂ global plasma simulations

tions ^Cquant*e*mol

LiDb example page

9		-	11/ 💼

da Lifetimes database					Data About API Contact
		States of SiH			
				Search:	
Electronic state	👔 Vibrational state	†⊨ Energy (eV) 🕆	Lifetime (s)	↑↓ Transitions from	👔 Transitions to 👔
a ⁴ Σ ⁺	<i>v</i> =0	0.694	9.61e-01		^
A²Δ	<i>v</i> =0	0.002	5.20e-07		
Х²П	<i>v</i> =0	0.246			23
B²Σ⁺	<i>v</i> =0	0.102	1.39e-01		
A²Δ	<i>v</i> =1	0.015	6.21e-07		
a ⁴ Σ ⁺	<i>v</i> =1	0.711	2.24e-01		
Х²П	<i>v</i> =1	0.271	8.44e-03		29
B²Σ⁺	<i>v</i> =1	0.104	1.16e-01		
A²Δ	<i>v</i> =2	0.021	7.72e-07		
Β²Σ+	<i>v</i> =2	0.110	1.46e-01		
Х²П	<i>v</i> =2	0.302	4.52e-03		34
a ⁴ Σ ⁺	<i>v</i> =2	0.721	1.08e-01		
A²Δ	<i>v</i> =3	0.031	9.99e-07		
Х²П	<i>v</i> =3	0.309	3.24e-03		39
a ⁴ Σ⁺	<i>v</i> =3	0.739	6.41e-02		
$B^{2}\Sigma^{+}$	<i>v</i> =3	0.122	2.54e-01		
a ⁴ 5*	<u>v=4</u>	0 746	4 290-02		
Electronic state	Vibrational state	Energy (eV)	Lifetime (s)	Transitions from	Transitions to

Showing 1 to 17 of 74 entries

Lida database is funded by STFC project ST/W000504/1. It uses ExoMol data generated by ERC Advanced Investigator Projects 267219 and 8838: Selence and Technology Facilities Council

https://www.exomol.com/lidb

Filling the gap Heavy Particle Reactions

Heavy particle collisions

Plasma chemistry is heavily governed by heavy particle reactions such as:

- Charge Exchange
- Ion-Ion Recombination
- Neutral-Neutral Reactions

When data are missing one can:

quantemol

- Estimate data in analogy to similar reactions
- Calibrate the missing rate coefficients to match experimental results
- Calculate them numerically

However, these methods are either rather inaccurate or time-consuming

ML estimator for rate coefficients

Heavy particle collisions

 $A + B \rightarrow C + D$

Machine learning model

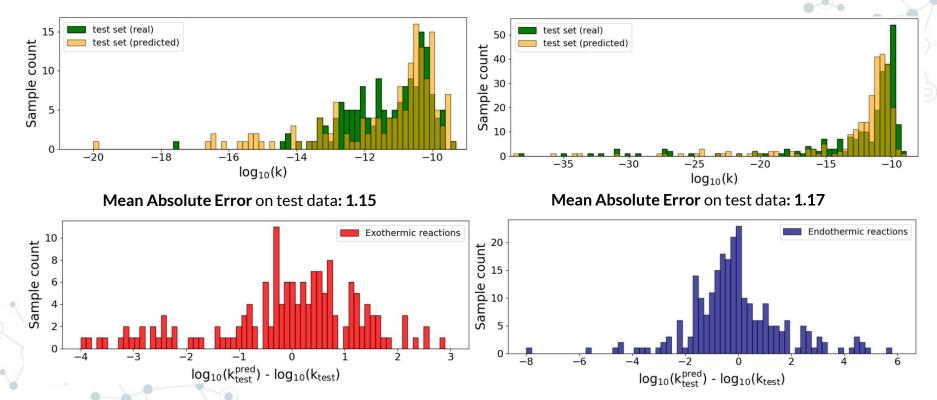
Target:

Rate coefficients, **k** ~ 10^{-40} - 10^{-5} at 300 ± 30 K

~12500 reactions collected from KIDA, NFRi, Umist and QDB databases

Input features:

🔄 quantemol


- mass, **m**
- charge, **q**
- standard enthalpy of formation, $\Delta_{\mu}H^{0}$
- polarizability, **α**
- dipole moment, **p**
- enthalpy of formation of a neutral counterparts to charged species, $\Delta_{f} H^{0}_{neut}$
- ionisation energy of neutral species
- species elemental composition data

Results: ML estimator for rate coefficients 🤹 quantemol

Reactions like $A + B \rightarrow C + D$

ΔH < 0: 173 test reactions

ΔH > 0: 274 test reactions

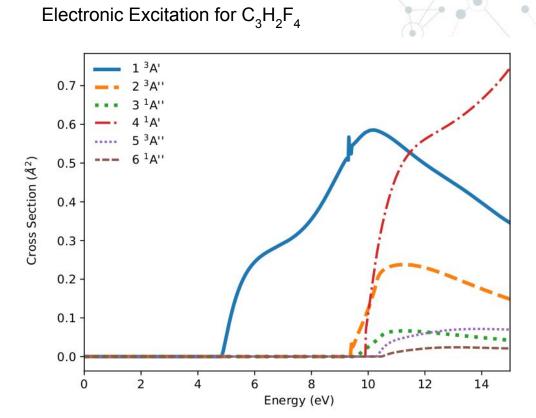
Using the rate coefficient estimator

REACTIONS							
SEARCH DATA SOURCES	Please enter the	e chemical reacti	Calculator	tigate. Please note			
UPLOAD PROCESSES	 Ions are specified Species are separation 	reted by '+' and reac	CH4,HCL followed by the charge number, tants and products are separate r two reactant-product pairs e.g	d by ' -> '	(
DOWNLOAD LIMITS		Read	CH4 + 0 -> CH3 + OH	SUBMIT	RESET		
	Species	Enthalpy (kJ/mol)	Neutral Enthalpy (kJ/mol)	Dipole Moment (D)	Polarizability (Å ³)		
DATA CONTRIBUTORS	CH4	-74.6	-74.6	0.0	2.448		
CONTRIBUTE DATA	0	249.175	249.175	0.0	0.802		
	CH3	146.9	146.9	0.0	1.835		
	ОН	37.3	37.3	1.66	0.761		

🤹 quantemol

https://www.quantemoldb.com/reactions/rate-coefficient-estimator/

For more information, contact us through this form or at sales@quantemol.co

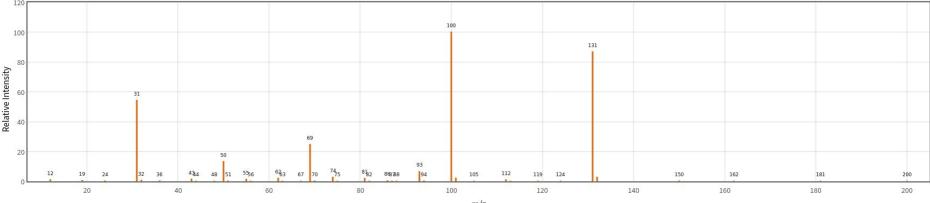

Filling the gap Branching Ratios

Electron collisions

Cross- sections for electron-molecule cross-sections can be calculated precisely via different methods (BEB,R-Matrix etc.)

For ionization and dissociation, these calculations do not yield the fragmentation patterns!

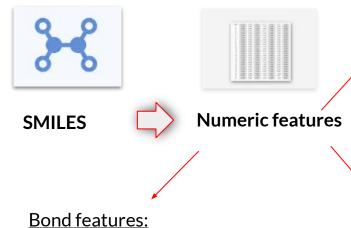
guant*e*mol


How to determine fragments -Dissociative Ionization

 Mass spectra in combination with bond strengths/appearance potentials can be used to split up the total ionization

quantemol

Cyclobutane, octafluoro-


Mass Spectrum

https://webbook.nist.gov/cgi/cbook.cgi?ID=C115253&Um/its=SI&Mask=200#Mass-Spec

Prediction of electron impact ionisation fragmentation patterns

Input features

- <u>Dona reatares.</u>
 - bond types (single,double,..)
 - bond chirality
 - (e,z,unknown,none)
- bonds in rings
- conjugated bonds

Atomic features:

- atom types (C, O, N, S ...)
- atom valence
- number of neighbours
- atom hybridization

Molecular features:

molecular mass

total N atoms

total N bonds

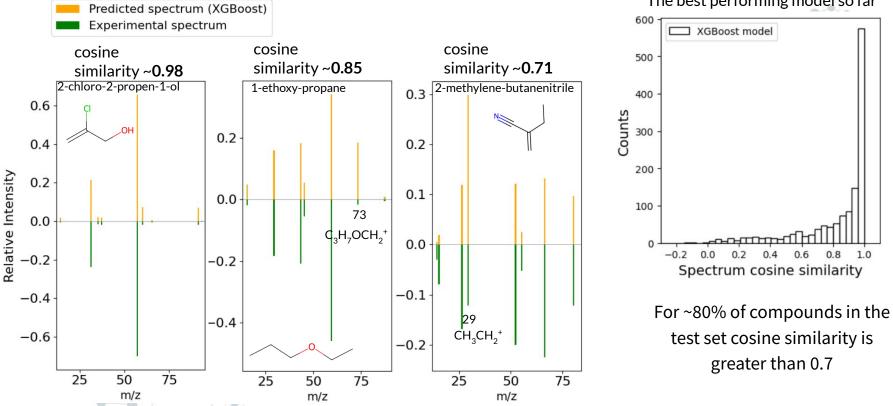
• atom aromaticity

🔄 quantemol

Target

Machine

learning

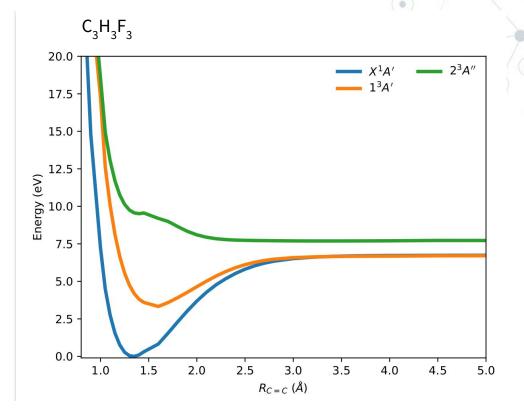

model

training

Mass spectrum vectors y=(y1, y2, ... yn)

Prediction of electron impact ionisation fragmentation patterns

Evaluation metric: cosine similarity between real and predicted mass spectra



The best performing model so far

🔄 quantemol

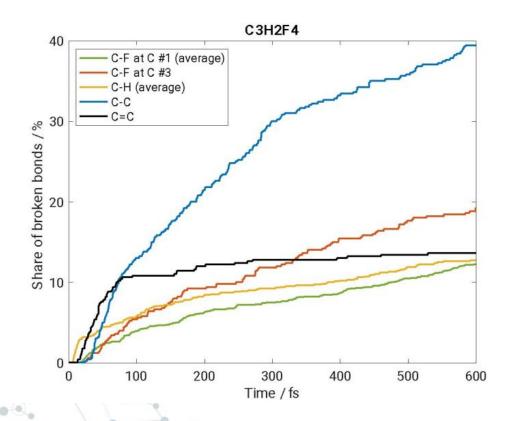
How to determine fragments - Neutral Dissociation

Analysing potential curves can tell you which dissociation pathways from a given state are possible, but not whether they actually happen or in which ratio.

🔄 quantemol

Explanation

- Time dependent Schroedinger equation is solved for motion of the nuclei in the molecule.
- The resulting trajectories of nuclei determine which bonds are broken after the excitation to an excited state.
- The computations are repeated with random initial conditions.
- We count how often a specific bond gets broken.



quantemol

Results for C₃H₂F₄

🤹 quantemol

Product	P
F	0.49
CF_3	0.36
C_2H_2F	0.25
Н	0.22
$C_3H_2F_3$	0.20
CHF	0.13

Summary and Outlook

😪 quantemol

To close data gaps in our database we are working on:

- LiDb, a database for radiative processes prepared in a format suitable for plasma simulations
 - Add atomic transitions
- A Machine Learning algorithm for a quick estimation of heavy particle rate coefficients
 - Likely needs more data to improve performance
- A Machine Learning algorithm to estimate ionization mass spectra of molecules
 - Good initial results, currently implementing it into our services
- Ab Initio Method to calculate branching ratios for electron impact neutral dissociation
 - First results soon to be published

Thank you for your attention.