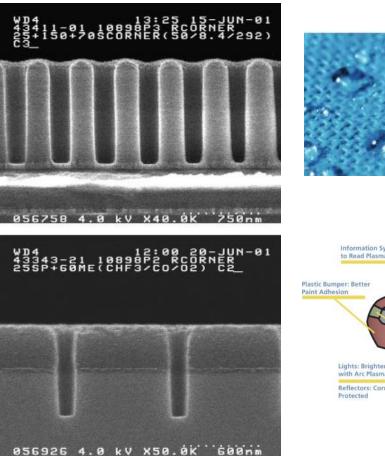
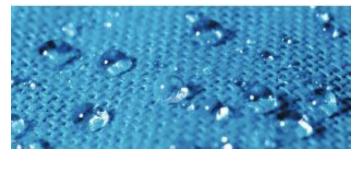
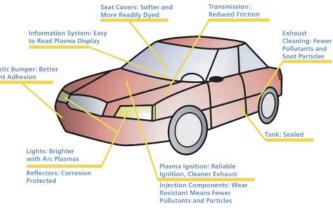

UCL Department of Physics and Astronomy




Outline


- □ Introduction: Why we simulate the spectra for plasma?
- □ Methods: QDB, Pygmol, LiDA, and Exocross
- □ Results and discussion: species distributions and emission spectra
- Conclusion and outlook

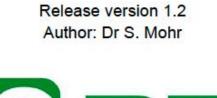
Introduction

- Plasma is important for almost all the industrial activities, such as
 - Semiconductor chips manufacture
 - Nuclear fusion
- However, a universal and comprehensive modelling for the dynamics of the chemistry in the plasma is still rare.
- Mainly due to the complex nature of plasma, e.g., for CO₂, 73 species, more than 5000 reactions.

plasma-assisted "reactive-ion etching"

Plasma-enhanced chemical vapor deposition

R. d'Agostino, et al. Plasma Process. Polym. 2005, 2, 7–15.


Methods: QDB and PyGmol

- Quantemol data for species and reactions.
- Global model for plasma chemistry.

Species and State	Number of processes		Mass (amu)	Ionization Potential (eV)	Polarizability (Å ³)	Lennard-Jones Radius (Å)	Lennard-Jones Well Depth (K)	State Energy (eV)	
	as reactant	as product							
CO ₂	231	100	44.010	13.778	2.507	3.940	195.200	N/A	
CO2 v=1	0	1	44.010	13.678	N/A	N/A	N/A	0.100	
CO2 v=2	0	1	44.010	13.603	N/A	N/A	N/A	0.175	
CO2 v=3	0	1	44.010	13.603	N/A	N/A	N/A	0.175	
CO2 v=4	0	1	44.010	11.253	N/A	N/A	N/A	2.525	
CO2 v=5	0	1	44.010	12.253	N/A	N/A	N/A	1.525	

	Reaction	Process	Data available				
			Cross section	Rate constant data			
В	$e^- + CO_2 \rightarrow O^- + CO$	EDA	~	-			
	$CO_2 + CO^+ \rightarrow CO_2^+ + CO$	HIR	-	~			
	$O_2 + CO_2^+ \rightarrow O_2^+ + CO_2$	HIR	-	~			
	$0 + CO_2^+ \rightarrow 0^+ + CO_2$	HIR	-	~			
	$0 + COF \rightarrow CO_2 + F$	HIR	-	~			
	$0^* + COF_2 \rightarrow F_2 + CO_2$	HIR	-	~			
	$0^* + COF \rightarrow CO_2 + F$	HIR	-	~			

Quantemol Global Model Manual 2022

$$\frac{\mathrm{d}n_i}{\mathrm{d}t} = \left(\frac{\delta n_i}{\delta t}\right)_{\mathrm{vol}} + \left(\frac{\delta n_i}{\delta t}\right)_{\mathrm{flow}} + \left(\frac{\delta n_i}{\delta t}\right)_{\mathrm{diff}}.$$

$$\frac{\mathrm{d}\varrho_{\mathrm{e}}}{\mathrm{d}t} = \frac{P}{V\mathrm{e}} - \left(\frac{\delta\varrho_{\mathrm{e}}}{\delta t}\right)_{\mathrm{el/inel}} - \left(\frac{\delta\varrho_{\mathrm{e}}}{\delta t}\right)_{\mathrm{gen/loss}} - \left(\frac{\delta\varrho_{\mathrm{e}}}{\delta t}\right)_{\mathrm{el}\to\mathrm{walls}} - \left(\frac{\delta\varrho_{\mathrm{e}}}{\delta t}\right)_{\mathrm{ion}\to\mathrm{walls}}$$

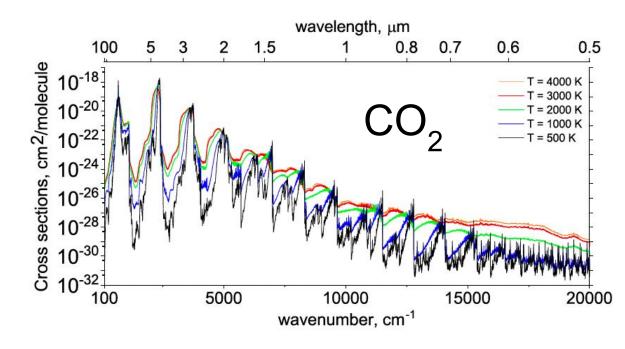
Particle and electron densities dynamics

Hanicinec et al 2020 Plasma Sources Sci. Technol. 29 125024. Tennyson et al 2022 Plasma Sources Sci. Technol. 31 095020

Methods: LiDB (lifetime database)

LiDB is a database of molecular vibrational and vibronic state radiative lifetimes. Full details of the methodology and data structure can be found in the LiDB publication.

iDB	Lifetimes Data≣ase	Data About API Contact	
	About LiDD		Vibrational state: (v ₁ , v ₂ , v
	About LiDB		(0, 0, 0)
	s a database of molecular vibrational and vibronic state radiative lifetimes. Full det	ails of the methodology and data structure can be found	
in the l	LiDB publication.		(0, 0, 1)
You are	re requested to cite the relevant LiDB journal articles in any publications using LiDE	l data	(0, 0, 2)
			(0, 0, 3)
Licens		CITY TANDA ZANG STANI	
	a in LiDB is released under the <u>Creative Commons Attribution-ShareAlike 4.0 Inter</u>	national (CC BY-SA 4.0) licence.	(0, 0, 4)
	e free to: hare — copy and redistribute the material in any medium or format.		(0, 0, 5)
	dapt — remix, transform, and build upon the material for any purpose, even comm	ercially.	
Under	the following terms:		
	hareAlike — If you remix, transform, or build upon the material, you must distribut riginal.	e your contributions under the same license as the	
	tribution — You must give appropriate credit, provide a link to the license, and in asonable manner, but not in any way that suggests the licensor endorses you or y		
			Initial state
			v =(0, 0, 1)
		Science and	v =(0, 0, 1)
		Selence and Telencegy Pacificiae Council	v =(0, 0, 1)
,000.			v =(0, 0, 2)


States of CO ₂									
			\$	Search:					
Vibrational state: (v ₁ , v ₂ , v ₃)	🗍 Energy (eV)	🕴 Lifetime (s)	Transitions from	Transitions to					
(0, 0, 0)	0.000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
(0, 0, 1)	0.291	2.38e-03							
(0, 0, 2)	0.579	1.24e-03							
(0, 0, 3)	0.865	8.59e-04							
(0, 0, 4)	1.146	6.69e-04							
(0, 0, 5)	1.180	8.69e-04							

Transitions of CO ₂							
			Search:				
Initial state	🔶 Final state	≜ ΔE (eV)	Partial lifetime (s)				
v =(0, 0, 1)	v =(0, 0, 0)	-0.291	2.38e-03	0			
v =(0, 0, 1)	v =(0, 2, 0)	-0.132	2.25e+00				
v =(0, 0, 1)	v =(1, 0, 0)	-0.119	2.68e+00				
v =(0, 0, 2)	v =(0, 0, 1)	-0.288	1.24e-03				
v =(0, 0, 2)	v =(0, 1, 0)	-0.497	7.97e+02				
v =(0, 0, 2)	v =(0, 2, 1)	-0.131	1.22e+00				

Tennyson, et al. Journal of Quantitative Spectroscopy & Radiative Transfer 255 (2020) 107228

Methods: Exocross

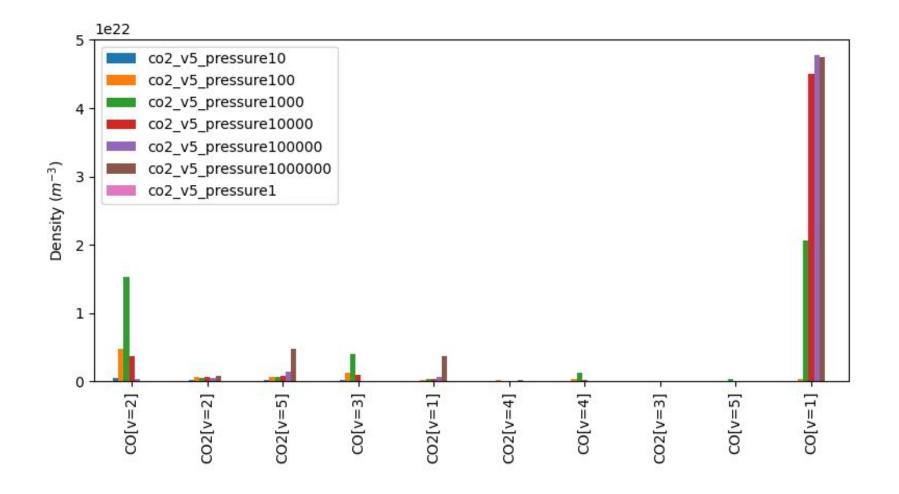
- EXOCROSS: a general program for generating spectra from molecular line lists.
- Cross sections, absorption spectra, emission spectra, etc.

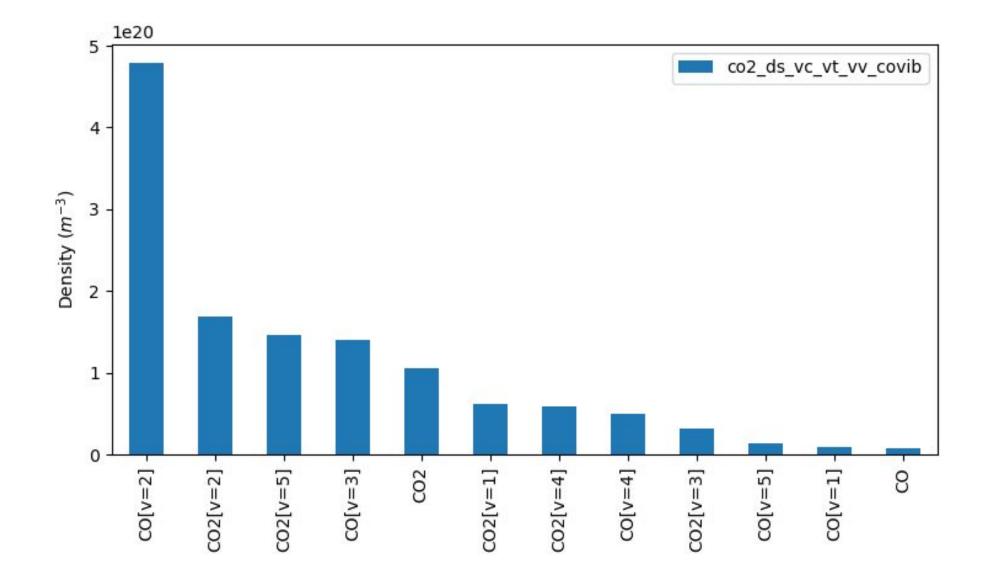
$$\epsilon(i \to f) = \frac{g_i^{\text{tot}} A_{fi} \tilde{\nu}_{fi}}{4\pi} \frac{e^{-c_2 \tilde{E}_i/T}}{Q(T)}.$$

Table 5. Extract from the states file of the ${}^{14}N^{16}O$ line list.

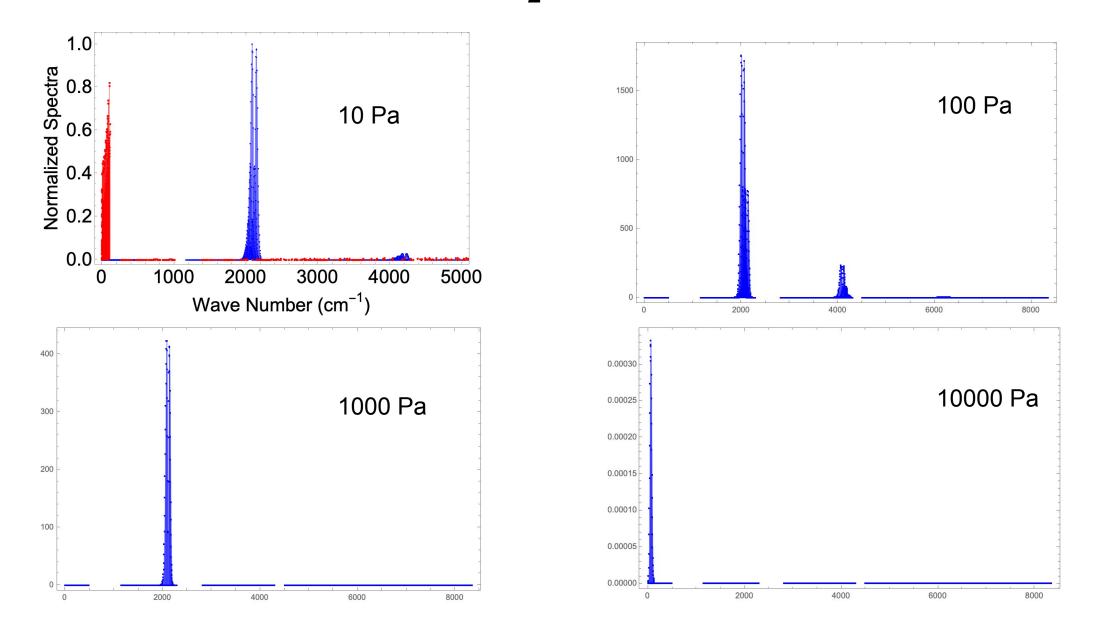
i	Energy (cm ⁻¹)	g_i	J	τ	<i>g</i> J	+/-	e/f	State	v	Λ	Σ	Ω
1	0.000000	6	0.5	inf	-0.000767	+	e	X1/2	0	1	-0.5	0.5
2	1876.076228	6	0.5	8.31E-02	-0.000767	+	e	X1/2	1	1	-0.5	0.5
3	3724.066346	6	0.5	4.25E-02	-0.000767	+	e	X1/2	2	1	-0.5	0.5
4	5544.020643	6	0.5	2.89E-02	-0.000767	+	e	X1/2	3	1	-0.5	0.5
5	7335.982597	6	0.5	2.22E-02	-0.000767	+	e	X1/2	4	1	-0.5	0.5
6	9099.987046	6	0.5	1.81E-02	-0.000767	+	e	X1/2	5	1	-0.5	0.5
7	10836.058173	6	0.5	1.54E-02	-0.000767	+	e	X1/2	6	1	-0.5	0.5
8	12 544.207270	6	0.5	1.35E-02	-0.000767	+	e	X1/2	7	1	-0.5	0.5
9	14224.430238	6	0.5	1.21E-02	-0.000767	+	e	X1/2	8	1	-0.5	0.5
10	15876.704811	6	0.5	1.10E-02	-0.000767	+	e	X1/2	9	1	-0.5	0.5
11	17 500.987446	6	0.5	1.01E-02	-0.000767	+	e	X1/2	10	1	-0.5	0.5
12	19097.209871	6	0.5	9.41E-03	-0.000767	+	e	X1/2	11	1	-0.5	0.5
13	20665.275246	6	0.5	8.83E-03	-0.000767	+	e	X1/2	12	1	-0.5	0.5
14	22205.053904	6	0.5	8.35E-03	-0.000767	+	e	X1/2	13	1	-0.5	0.5
15	23716.378643	6	0.5	7.94E-03	-0.000767	+	e	X1/2	14	1	-0.5	0.5
16	25 199.039545	6	0.5	7.59E-03	-0.000767	+	e	X1/2	15	1	-0.5	0.5

Yurchenko, et al., Astronomy & Astrophysics, 614, A131 (2018)

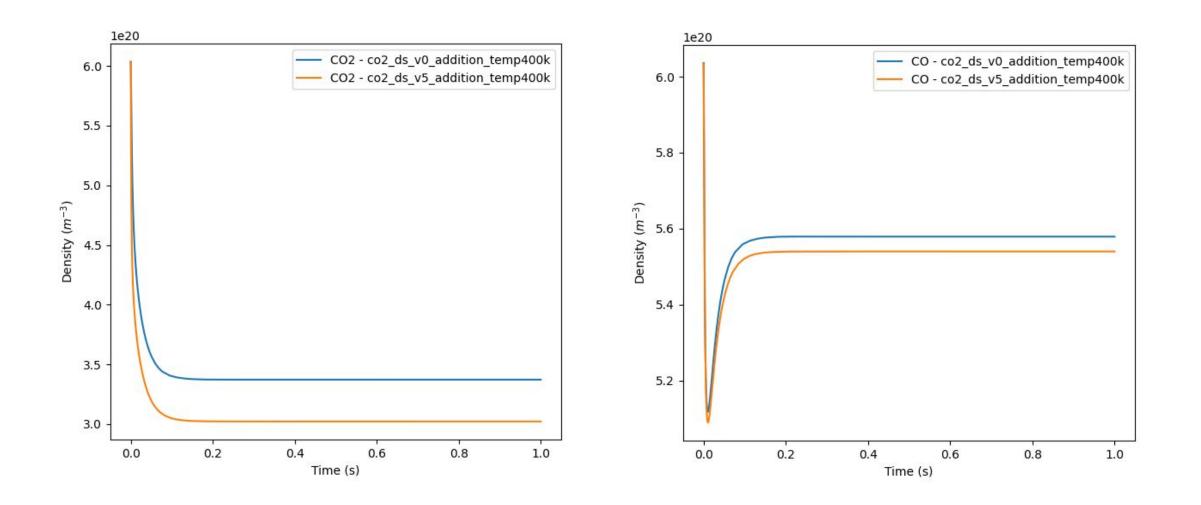

Methods: integration


- Add decay of vibrational excited states.
- Add heavy particle collision for vibrational excited states, using the data in the STELLAR database.
- Integrate QDB and LiDB data into Pygmol plasma chemistry simulations and obtain the species distributions.
- Compute emission spectra using Pyexocross (python version of ExoCross).

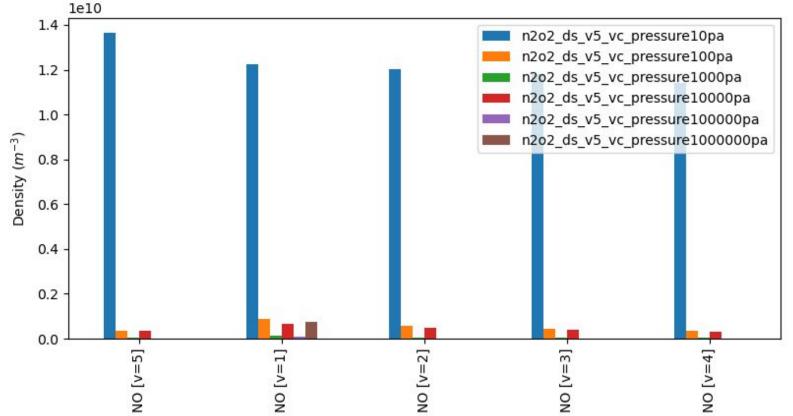
Vargas, et al. J. Phys. Chem. A 2021, 125, 2, 493–512


Database: http://esther.ist.utl.pt/pages/stellar.html

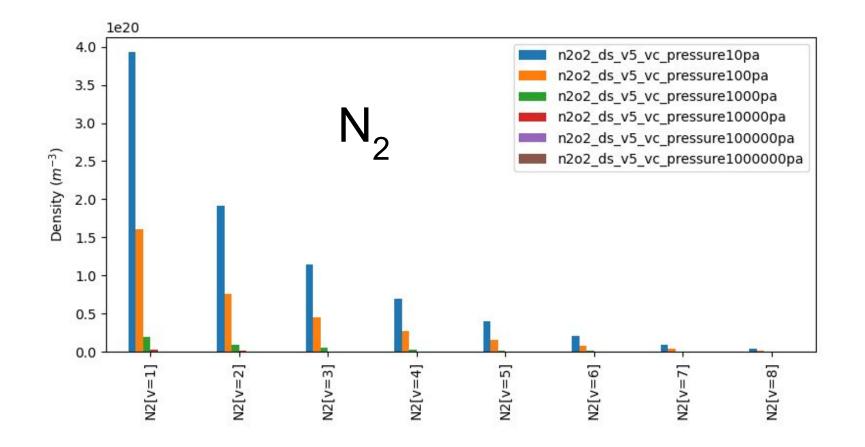
Results: population distributions (CO_2)



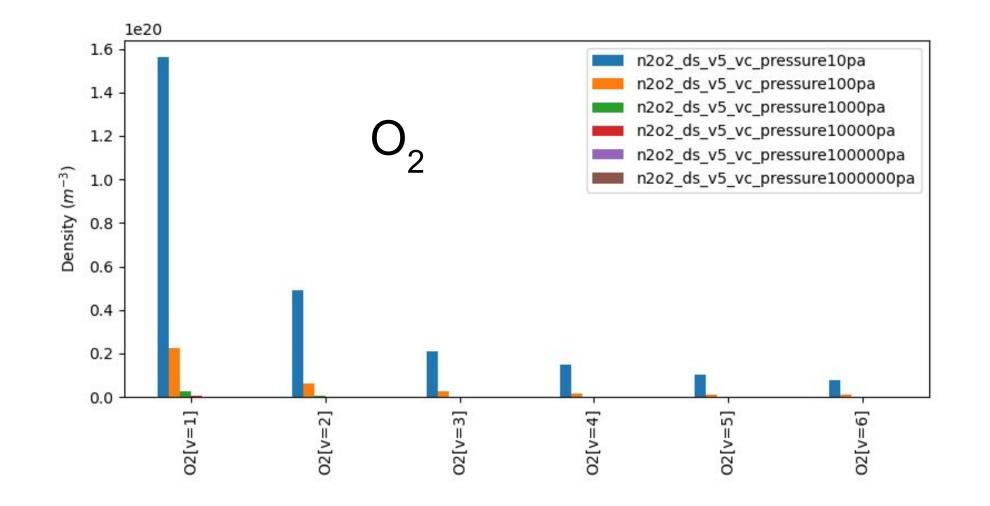
Results: Pressure- dependent CO₂ plasma emission spectra

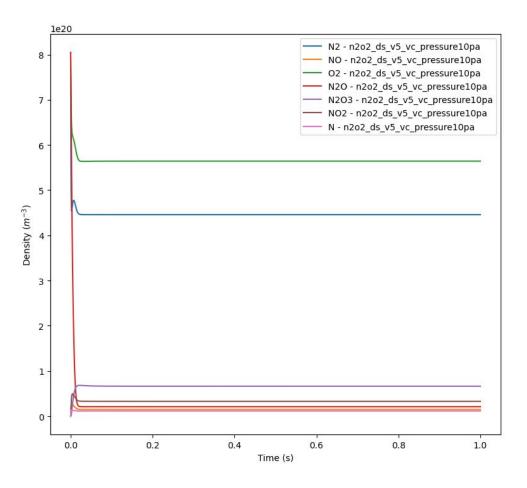


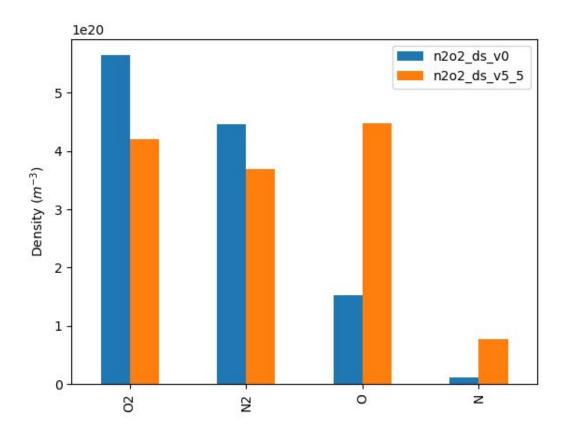
Results: time dependence



Results: $N_2 + O_2$


NO


Results: $N_2 + O_2$



Results: $N_2 + O_2$

Results: N₂ + O₂

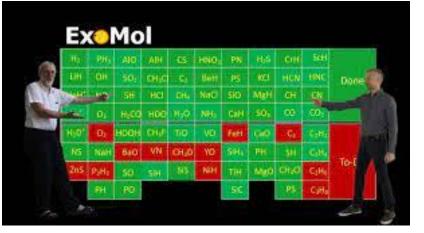
Conclusion and outlook

- Computed emission spectra by integrating QDB, LiDB, Pygmol, and Exocross.
- ✓ Obtained the species distributions from QDB App.
- \checkmark Clearly see the CO₂ and CO spectra lines.
- \Box Finish the spectra calculations for CO₂ and publication.
- □ Extend methodologies to other interesting systems such as $N_2 + O_2$. □ Integrate softwares mentioned above into a single Python framework.

Acknowledgement

- Ms. Jingxin Zhang, UCL
- Prof. Jonathan Tennyson, UCL
- Dr. Sebastian Mohr, Quantemol
- Dr. Alec Owens, UCL
- Dr. Martin Hanicinec, UCL

European Research Council


Established by the European Commission

Engineering and Physical Sciences Research Council

Thank you for listening!