Assembling and optimizing plasma chemistry sets using QDB

Sebastian Mohr 04.10.2023

Potential issues which can be addressed with simulations

Limited **conformality** in high aspect ratio structures Uplasma configuration plasma c

Potential plasma damage to the substrate

🤹 quantemol

"Conformality in atomic layer deposition: Current status overview of analysis and modelling featured." V.Cremers, R.L. Puurunen and J.Dendooven, Applied Physics Reviews 6, 021302 (2019)

Higher radical densities lead to higher radical fluxes deeper in the trench, enhancing the conformality

Problem statement

Every plasma simulation consists of two parts:

Physical Model:

Describes particle transport, electromagnetic fields etc.

Should be chosen to according to parameter space and specific balance of speed and accuracy:

PIC, Fluid, DSMC, Hybrid

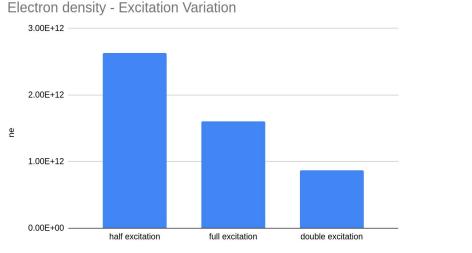
Global, 1D, 2D, 3D

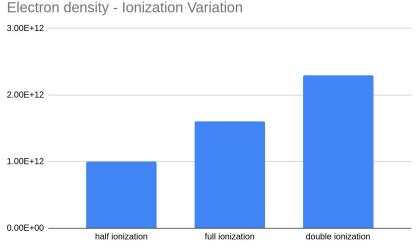
Chemical Model:

Describes the chemical reactions in a plasma via a set of species :

quantemol

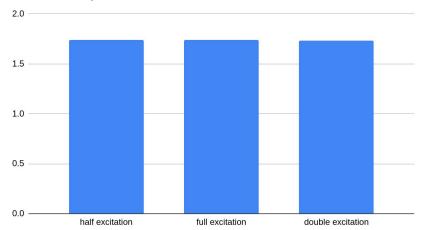
- Neutrals
- Excited states
- Positive and negative ions
- Electrons

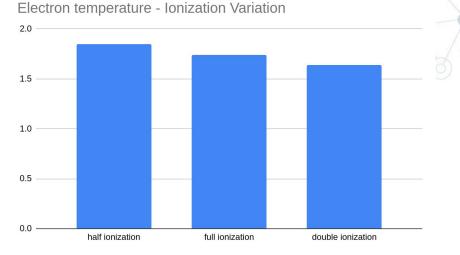

And reactions:


- Electron impact collisions
- Heavy particle collisions

- Elastic collision/momentum transfer: electron transport, gas heating
- Excitation: Determines density of excited states.
- Dissociation: Determines density of dissociation products.
- Dissociative Attachment: Determines electronegativity

quantemol

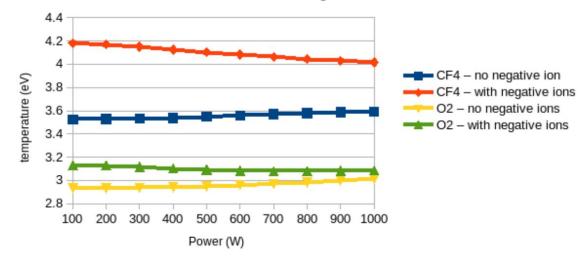

- Electron detachment: Determines electronegativity
- Ionization: Determines ionization rate
- Recombination: Determines recombination rate



quantemol

Excitation processes have a larger influence on electron density than the actual ionization processes. \rightarrow If the electron density looks off, turn your attention to excitation and dissociation reactions!

Electron temperature - Ionization Variation



Only ionization processes significantly affect the electron temperature in a simple argon model.

Electron temperature

quantemol

with and without negative ions

The presence of negative ions generally increases the electron temperature. \rightarrow If the electron temperature looks off, turn your attention to electron production and losses!

Overview of Heavy Particle Collisions

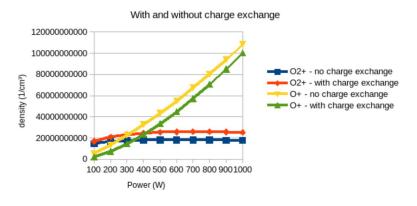
- Ion-Ion Recombination
- Symmetric Charge Exchange
- Asymmetric Charge Exchange
- Neutral conversion
- Electron detachment
- Penning Ionization

 $A^+ + B^- \rightarrow A + B$

quantemol

$\mathsf{AB}^{+} + \mathsf{C}^{-} \to \mathsf{A} + \mathsf{B} + \mathsf{C}$

Vital for electronegative plasmas.


Typically represents the only efficient loss channel for negative ions.

Overview of Heavy Particle Collisions

- Ion-Ion Recombination
- Symmetric Charge Exchange
- Asymmetric Charge Exchange
- Neutral conversion
- Electron detachment
- Penning Ionization

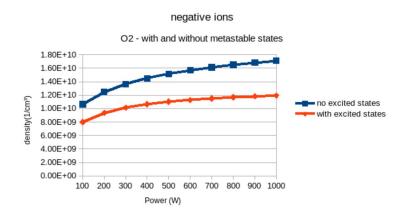
Asymmetric charge exchange affect the relative ion densities apart from heating neutrals.

Positive ion densities

 $A^+ + BC \rightarrow A + B + C$

 $A^+ + B \rightarrow A + B^+$

🍄 quant*e*mol


Overview of Heavy Particle Collisions

- Ion-Ion Recombination
- Symmetric Charge Exchange
- Asymmetric Charge Exchange
- Penning Ionization
- Neutral conversion
- Electron detachment

 $A + B^{-} \rightarrow A + B + e$ $A^{*} + B^{-} \rightarrow A + B + e$

🤹 quantemol

Electron detachment can significantly influence the electronegativity of a plasma.

Approaches to chemistry set design

All-In

Simply collect all reactions and species found relevant for process parameters

Pro: <u>Fast</u>

Contra: Hard to identify problematic reactions, e.g. missing ones, duplicates etc.

Well suited for established sets with sufficient available data

Step-by-Step

Start with one feed gas and add reactions. Identify "new" species, e.g. ions, excited states, dissociation products and reactions one by one.

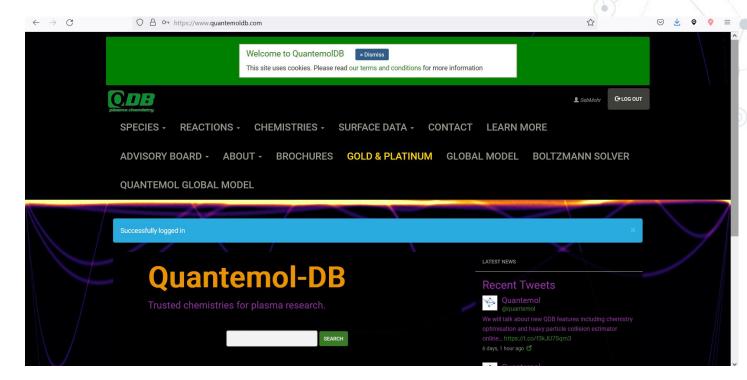
quantemol

Repeat for other feed gases.

Add cross-reactions and reactions for resulting species.

Pro: <u>More control</u>, easy to identify missing reactions etc.

Contra: Needs more time


Suited for sets with "new" gases or data gaps.

🔄 quant*e*mol

Where to get relevant data?

QDB offers access to cross-section and rate coefficients data for almost 30 000 reactions.

It also gives access to pre-assembled chemistry sets, species data such as enthalpies of formation, and some surface coefficients.

Desktop app

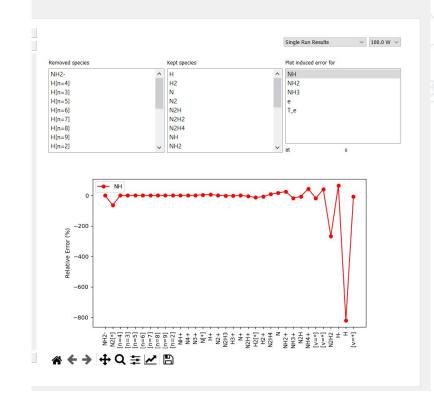
Chemistry sets can be also be quickly created and tested via 0D simulations in the QDB desktop app.

T coc -	eneration les are selec	et ad	Jona			Results 😁 Analysis	2.10 2.50		actions are se	octod						
25 speci	es are selec	cted.	Name	Sticking Coefficient	Return Coeffic	tient Return Spe	cies ^		actions are set	ected.	Reaction			n	E	
v	Delete	Properties			0.0000	t H	*	~	Delete	Info	e- + H2 > e- + H2	1.73e-07	-0.3		0.59	
v	Delete	Properties	H+		1.0000	¢ н	*	V	Delete	Info	e- + H2 > e- + H + H	1.15e-07	-0.58	3	11.56	_
v	Delete	Properties	H-	1.0000	1.0000	¢ н	*	~	Delete	Info	e- + H2 > e- + e- + H2+	1.09e-08	0.46	(16.03	_
v	Delete	Properties	H2	0.0000	0.0000	1 H2	*	~	Delete	Info	e- + H2 > e- + H + H[n=2]	1.96e-10	0.27		14.99	_
v	Delete	Properties	H2+		1.0000	‡ H2	*	~	Delete	Info	e- + H2+ > e- + H2+	1.44e-04	-1.19	9	0.05	
v	Delete	Properties	H3+	1.0000	1.0000	0 H	*	V	Delete	Info	e- + H2+ > e- + H+ + H	2.72e-07	-0.24	1	2.74	_
v	Delete	Properties	H[n=2]	1.0000	1.0000	‡ н	*	~	Delete	Info	e- + H2+ > H + H	4.94e-08	-0.50)	0.03	
v	Delete	Properties	N	0.0000	0.0000	1 N	-	v	Delete	Info	e- + H > e- + H	1.97e-07	-0.29	9	0.22	_
v	Delete	Properties	N+	1.0000	1.0000	\$ N	•	~	Delete	Info	e- + H > e- + H[n=2]	2.03e-08	0.37	8	12.09	
v	Delete	Properties	N2	0.0000	0.0000	‡ N2	*	V	Delete	Info	e- + H > e- + e- + H+	4.54e-09	0.72		13.55	
v	Delete	Properties	N2+	1.0000	1.0000	\$ N2	*	4							Backward	F
-	Delete	Properties	N2H	0.0000	0.0000	0 N2H	*						Add R			
~	Delete															
v v		Properties		0.0000	0.0000	1 N2H2	• •								2	
v		Properties		0.0000	0.0000	Add Cu	istom Species	Sho	w only selecte					Filter by Prod		
✓ ✓ Auto	Delete Add Reacti	Properties		0.0000	0.0000	Add Cu			w only selecte		Filter by Reactants			Filter by Prod	lucts	
✓ ✓ Auto	Delete Add Reacti	Properties		0.0000	0.0000	Add Cu	istom Species	Sho	w only selecte		Filter by Reactants		•	Has Prod	lucts	
✓ ✓ Auto =iltering □ Sho	Delete Add Reacti	Properties ions		0.0000	0.0000	Add Cu	istom Species	Sho	w only selecte		Filter by Reactants			Has Prod H[n=2] N	lucts	
✓ ✓ Auto =iltering □ Sho	Delete Add Reacti	Properties ions		0.0000	0.0000	Add Cu	istom Species	🗌 Shơ Filter b	w only selecte	d reactions	Filter by Reactants			Has Prod H[n=2] N N+ N2	lucts	
✓ Auto Filtering Sho ✓ Gro	Delete Add Reacti	Properties ions		0.0000	0.0000	Add Cu	istom Species	🗌 Shơ Filter b	w only selecte ny Type	d reactions	Filter by Reactants H H+ H+ H2 H2+			Has Prod H[n=2] N N+ N2 N2+	lucts	
✓ Auto- Filtering Sho ✓ Gro ✓ Exc	Delete Add Reaction www.only.sele	Properties ions		0.0000	0.0000	Add Cu	istom Species	🗌 Shơ Filter b	w only selecte ny Type	d reactions	Filter by Reactants H Has Reactants H H+ H2 H2 H3+ H(n=2]			Has Prod H[n=2] N+ N2 N2+ N2H N2H2	lucts	
✓ ✓ Auto- Filtering Sho ✓ Gro ✓ Exc ✓ Pos	Delete Add Reacti w only sele ound State N ited States	Properties ions		0.0000	0.0000	Add Cu	istom Species	🗌 Shơ Filter b	w only selecte ny Type	d reactions	Filter by Reactants Has Reactants H+ H+ H2 H2+ H3+ H[n=2] N			Has Prod H[n=2] N N+ N2 N2+ N2H N2H2 N2H2 N2H3	lucts	
✓ Auto Filtering Sho ✓ Gro ✓ Exc ✓ Pos ✓ Neg	Delete Add Reacting woonly sele ound State N ited States sitive Ions gative Ions	Properties ions		0.0000	0.0000	Add Cu	istom Species	☐ Shơ Filter b	w only selecte ny Type	ed reactions	Filter by Reactants H H+ H- H2 H2+ H3+ H[n=2] N N+ N2			Has Prod H[n=2] N N2 N2+ N2H N2H2 N2H2 N2H3 N2[*] N3+	lucts	
✓ ✓ Auto- Filtering Sho ✓ Gro ✓ Exc ✓ Pos	Delete Add Reacting woonly sele ound State N ited States sitive Ions gative Ions	Properties ions		0.0000	0.0000	Add Cu	istom Species	☐ Shơ Filter b	w only selecte y Type ow electron c	ed reactions	Filter by Reactants H Has Reactants H H2+ H3+ H(n=2] N N+			Has Prod H[n=2] N N+ N2 N2+ N2H N2H2 N2H2 N2H3 N2[*]	lucts	
✓ ✓ Auto- Filtering Sho ✓ Gro ✓ Exc ✓ Pos ✓ Neg Excited	Delete Add Reacting woonly sele ound State N ited States sitive Ions gative Ions	Properties ions acted species Neutrals		0.0000	0.0000	Add Cu	istom Species	☐ Shơ Filter b	w only selecte y Type ow electron c	ed reactions	Filter by Reactants Has Reactants H Has Reactants H H+ H2+ H2+ H3+ H2+ H3+ N2+ N2+ N2+ N2+ N2+ N2+ N2+ N2			Has Prod H[n=2] N N+ N2+ N2H N2H2 N2H3 N2+ N2H3 N2+ N3+ N4+ NH+	lucts	
✓ Auto Filtering Sho ✓ Gro ✓ Exc ✓ Pos ✓ Neg Excited ● Use	Delete Add Reaction www.only.sele wund State N ited States itive Ions gative Ions States	Properties ions acced species Neutrals		0.0000	0.0000	Add Cu	istom Species	☐ Shơ Filter b	w only selecte y Type ow electron c	ed reactions	Filter by Reactants Has Reactants H H+ H2 H2+ H1=2 N N N2 N2+ N2H			Has Prod H[n=2] N N+ N2+ N2H N2H2 N2H3 N2[*] N3+ N4+ NH	lucts	
Auto Auto Auto Auto Auto Auto Auto Sho V Gro V Exc V Pos V Neg Excited Use Use	Delete Add Reacti www.only.sele uund State N ited States itive Ions gative Ions States e pooled sta	Properties ons ected species Neutrals		0.0000	0.0000	Add Cu	istom Species	☐ Shơ Filter b	w only selecte y Type ow electron c	ed reactions	Filter by Reactants Has Reactants H H+ H2 H2+ H3+ H(n=2) N N2 N2+ N2H N2H N2H3		•	Has Prod H[n=2] N N+ N2+ N2+ N2H2 N2+ N2H3 N2[*] N3+ N4+ NH4 NH4 NH4 NH2	lucts	

quantemol

How to optimize sets for given process quantemol parameters

On the one hand, comprehensive sets usually contain more species/reactions than necessary to sufficiently predict important quantities such as the density of neutrals reacting with the surfaces.


On the other hand, important data such as coefficients describing surface processes might be missing/unknown/imprecise.

QDB offers tools to optimize sets and fill/calibrate missing data.

🔄 quant*e*mol

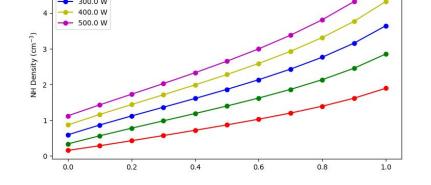
Optimization - Set reduction

The desktop app now allows the user to reduce chemistry sets for given process parameters including variations of one parameter to the smallest set which reproduces chosen plasma parameters within a defined error margin compared to the full set. This allows to optimize sets before exporting them to multi-dimensional models.

Optimization - Set reduction

The desktop app now allows the user to reduce chemistry sets for given process parameters including variations of one parameter to the smallest set which reproduces chosen plasma parameters within a defined error margin compared to the full set. This allows to optimize sets before exporting them to multi-dimensional models.

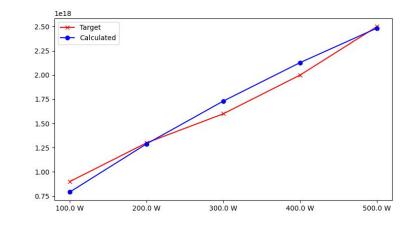
					Paramater Variation Overview $\ arsimes$	100.0 W 💊
	100.0 W	200.0 W	300.0 W	400.0 W	500.0 W	-
H[n=5]	0.42 % in e	-0.14 % in NH3	-5.01 % in NH2	-2.14 % in NH2	-2.44 % in NH3	
H[n=6]	0.44 % in e	-0.42 % in NH3	-4.91 % in NH2	-2.43 % in NH2	-1.21 % in NH2	
H[n=7]	0.45 % in e	-0.85 % in NH3	-4.55 % in NH2	-2.23 % in NH3	-2.89 % in NH3	
H[n=8]	0.45 % in e	-0.86 % in NH3	-3.90 % in NH2	-3.48 % in NH3	-4.69 % in NH3	
H[n=9]	0.46 % in e	-0.87 % in NH3	-3.89 % in NH2	-6.07 % in NH3	-4.88 % in NH3	
H[n=2]	0.93 % in e	-1.98 % in NH3	-6.63 % in NH3	-12.03 % in NH3	-22,74 % in NH3	
NH+	0.96 % in e	-2.87 % in NH	-3.32 % in NH2	-5.20 % in NH3	-2.52 % in NH3	
N4+	0.84 % in e	-2.08 % in NH	-5.76 % in NH3	-2.99 % in NH3	-4.95 % in NH3	
N3+	0.86 % in e	2.06 % in e	-6.88 % in NH3	-5.22 % in NH3	-8.75 % in NH3	
N[*]	4.81 % in NH	9.55 % in NH2	32.23 % in NH2	47.23 % in NH2	56.28 % in NH2	
H+	5.08 % in NH	9.98 % in e	11.18 % in e	-14.38 % in NH3	-31.25 % in NH3	
N2+	6.71 % in e	7.20 % in e	8.28 % in e	17.76 % in NH3	27.80 % in NH3	
N2H3	6.73 % in e	-2.76 % in NH	-1.82 % in NH	-1.32 % in NH	-1.30 % in NH2	
H3+	6.76 % in e	10.09 % in e	8.33 % in e	2.02 % in e	2.59 % in NH2	
N+	12.40 % in e		-11.13 % in NH3	-10.62 % in NH3	-17.47 % in NH3	
N2H+	6.93 % in e	10.13 % in e		68.75 % in NH3	68.36 % in NH3	
H2[*]	-12.91 % in NH	-11.64 % in NH	11.63 % in NH3	5.72 % in NH2	6.92 % in NH2	
H2+	15.56 % in e	21.85 % in NH2	19.81 % in e	10.66 % in NH2	11.16 % in NH2	
N2H4	-17.37 % in NH2	-9.83 % in NH2	-5.20 % in NH2	-2.50 % in NH2	-2.52 % in NH2	


Optimization - Surface Coefficient Variation

100.0 W

You can now run automated variations of surface coefficient for one absorbed/produced species pair, e.g. H producing NH at surfaces. Options are:

- a) Vary only sticking coefficient
- b) Vary only return coefficientc) Vary both


Here the return coefficient for NH produced by H with a constant sticking coefficient of H was varied.

Optimization - Surface Coefficient Calibration

You can also input target densities for the absorbed/produced species and find the coefficient (pair) which best reproduces these densities. Options are:

- a) Optimize only sticking coefficient for absorbed species
- b) Optimize only return coefficient for produced species
- c) Optimize both for either or both densities.

The example shows again NH produced by H with a constant sticking coefficient for H; plotted are the calculated NH densities for the optimum coefficient as a function of pressure compared to the target densities.

🔆 quant*e*mol

Estimating rate coefficients by Machine 🔅 quantemol Learning

Martin Hanicinec has developed an ML model as part of his PhD to estimate rate coefficients for binary heavy particle collisions A + B > C + D. This algorithm is embedded into the website and available via the QDB desktop app.

			QDB Global Model			- 0
Generation +-	- Chemistry Set 🛛 🛏 Boltzmann Solver	- Model Settings - Results - Analysis	- Data Estimation			
oefficient Estim	ator by Machine Learning					
	Formula	Enthalpy of Formation (kJ/mol)	Neutral Enthalpy of Formation (kJ/mol)	Dipole Moment (Debye)	Polirisaibility (A^3)	
tant 1	CF	255.28266101278808	255.28266101278808	-	-	
tant 2	н	218.03572309032182	218.03572309032182	0.0	0.667	
luct 1	c	716.7144662560772	716.7144662560772	0.0	1.76	
Juct 2	HF	-272.49733587268776	-272.49733587268776	1.82	-	
duct 3 (optional)		ĺ		1		
uto coofficient i	is actimated to be 5 4% 11 cml/s					
	is estimated to be 5.43e-11 cm³/s om QDB Estimate Rate Coefficient					

The user inputs the desired reaction; used species parameters are displayed and can be changed manually.

🔄 quantemol

Radiative Process Database LIDB

A separate database for radiative processes, LIDB, has been developed. It currently contains mostly information about molecular transitions; once atomic data has been added, an API will be added to the desktop app to quickly add radiative processes to the chemistry sets.

LIDB Lifetimes DataBase			Data About API Contac	
	Transitions o	fuc		
		л п г		
			Search:	
Initial state	Final state	🔶 Δ <i>Ε</i> (eV) 🔶	Partial lifetime (s)	
	v=0	-0.491	5.16e-03	
v=2	v=0	-0.961	4.44e-02	
v=2		-0.470	3.02e-03	
	v=0	-1.410	8.21e-01	
v=3		-0.919	1.52e-02	
		-0.449	2.40e+03	
v=4	v=0	-1.839	8.05e+00	
v=4		-1.348	2.25e-01	
v=4	v=2	-0.878	7.77e-03	
v=4		-0.429	2.21e-03	
	<i>v</i> =0	-2.248	7.12e+01	
			1.75e+00	
v=5	v=2	-1.287	9.88e-02	
		-0.838	4.71e-03	
v=5	<i>v</i> =4	-0.409	2.25e-03	
<i>v</i> =6		-2.146	1.20e+01	
Initial state	Final state	∆ <i>E</i> (eV)	Partial lifetime (s)	
Showing 1 to 17 of 35 entries				
			Kernes and Technology Pactories Courses	
			A COUNTY AND A COU	