Extensions of Quantemol Electron Collisions (QEC) to handle isotopes and heavy elements

Greg Armstrong

Plasma Chemistry Data and Plasma Modelling Workshop 4th October 2023

- Calculates cross sections for electron-molecule collisions.
- Molpro quantum chemistry package provides molecular target orbitals.
- Molecular R-matrix (UKRmol+) code calculates cross sections.
- Calculations set up using user-friendly GUI interface.

Introduction to QEC

- Calculates cross sections and rates for various collisional processes including:
 - Elastic scattering.
 - Momentum transfer.
 - Electronic, rotational, vibrational excitation.
 - Dissociative electron attachment.
 - Ionization.

R-matrix theory

- Space divided into inner, outer and asymptotic regions.
- \blacksquare Inner region confines the N-electron molecular target.

outer region

Single outgoing electron

Exchange, correlation with inner electrons neglected

connection to of asymptotic forms

🤤 guantemol

- Outer region wavefunction extends to large distances.
- Connection to asymptotic forms allows calculation of cross sections.

R-matrix theory: inner region

🤹 quant*e*mol

Solve (N + 1)-electron time-independent Schrödinger equation using wavefunction expansion

$$\psi_k^{N+1} = \mathcal{A} \sum_{i,j} c_{ijk} \Phi_i^N(\mathbf{x}_1, ..., \mathbf{x}_N) \eta_{ij}(\mathbf{x}_{N+1}) + \sum_m b_{mk} \chi_m^{N+1}(\mathbf{x}_1, ..., \mathbf{x}_{N+1}).$$

• N-electron target wavefunctions $\Phi_i^N(\mathbf{x}_1, ..., \mathbf{x}_N)$ calculated using MOLPRO basis sets and orbitals.

R-matrix theory: outer region

- Exchange and correlation with inner region electrons are neglected.
- Solve for the radial wavefunction of a single outgoing electron (N+1):

$$\Psi^{N+1} = \sum_{p} \overline{\Phi}_{p}(\mathbf{X}_{N}; \hat{\mathbf{r}}_{N+1}, \sigma_{N+1}) \frac{F_{p}(r_{N+1})}{r_{N+1}}.$$

At large distances $(r_{N+1} = 100a_0)$, solutions connect to asymptotic forms to calculate K and T matrices, and cross sections.

6/15

- Isotope library now available for all elements.
- Most abundant isotope selected as default.
- Important in astrophysical applications, where major astronomical and terrestrial isotopes differ.

Cross sections and dipole moments for ArH⁺

ArH ⁺ dipole moments						
36 ArH $^+$	38 ArH $^+$	40 ArH $^+$				
2.2233	2.2319	2.240				

MOLPRO basis sets for heavy elements

- Heavy: molecules containing elements Ar-Kr.
- Consider all-electron basis sets without core potentials.
- Dunning (cc-pVXZ) and Pople (X-YZWG) basis sets are commonly used.
- Pople basis sets only available for H-Ar.
- Include Karlsruhe bases in QEC for elements Ar-Kr.

quantemol

Karlsruhe basis sets

- Main hierarchy of Karlsruhe basis sets is:
 - def2-SVP Split valence polarization.
 - def2-TZVP Valence triple-zeta polarization
 - def2-QZVP Valence quadruple-zeta polarization
- Analogous to cc-pV(D/T/Q)Z basis sets.
- Can include diffuse functions (similar to aug-cc-pVXZ).

quantemol

Elastic scattering cross section for $GeCl_4$

Rotational excitation cross section for GeCl₄

🤹 quant*e*mol

 $J = 0 \longrightarrow 1$

Vibrational frequencies for GeCl₄

GeCl₄ NIST def2cc-p (cm^{-1}) VDZ VTZ SVP TZVP

13 / 15

Conclusions

- Rates and cross sections can now be calculated for any isotope.
- Calculations for elements Ar-Kr can be performed using Karlsruhe basis sets.

Vibrational frequencies for TiCl₄

TiCl ₄						
NIST	cc-p		def2-			
(cm^{-1})	VDZ	VTZ	SVP	TZVP	TZVPD	
389	384	391	381	395	394	
114	118	115	122	116	114	
498	510	514	508	518	514	
136	134	133	138	135	132	

