

Optimising Chemistry Sets

Martin Hanicinec 25/11/2020

Motivation

• Chemistry set (a.k.a. kinetic scheme, reaction set, kinetic mechanism, ...) is in the centre of every plasma numerical model.

Quant*e*mol 4

- Large published chemistry sets for plasma modeling might contain up to a hundred species and many thousand reactions [1]. This can pose some challenges with computational cost.
- Almost all published chemistry sets contain *redundant species and reactions* [2].

Chemistry set optimisation and insights

- Redundant species/reactions ...
 - ... related to which model outputs? Species of interest.
 - ... related to which set of plasma parameters or process conditions? *Reduction conditions.*

Chemistry reduction example - N_2/H_2

- Starting with the detailed reduction set for N_2/H_2 plasmas (published [3])
 - 42 species
 - 408 reactions

Neutrals	$\rm H \ H_2 \ N \ N_2 \ NH \ NH_2 \ NH_3$
Excited States	$H_2(b^{3}\Sigma_{u}^{+}) H_2(B^{1}\Sigma_{u}^{+}) H_2(c^{3}\Pi_{u}) H_2(a^{3}\Sigma_{q}^{+}) H_2(\nu_1) - H_2(\nu_3)$
	$N(^{2}D) N(^{2}P) N_{2}(A^{3}\Sigma_{u}^{+}) N_{2}(B^{3}\Pi_{g}) N_{2}(a'^{1}\Sigma_{u}^{-}) N_{2}(C^{3}\Pi_{u})$
	$\mathrm{N}_2(\nu_1)-\mathrm{N}_2(\nu_8)$
Positive Ions	$H^{+} H_{2}^{+} H_{3}^{+} N^{+} N_{2}^{+} N_{3}^{+} N_{4}^{+} NH^{+} NH_{2}^{+} NH_{3}^{+} NH_{4}^{+} N_{2}H^{+}$
Negative Species	$e H^-$

Chemistry reduction example - N_2/H_2

- Species of interest:
 - $\circ \quad \mathsf{NH, NH}_2, \mathsf{NH}_3$
- Reduction conditions:
 - Pressure: 9 Pa
 - Temperature: 300 K
 - \circ N₂/H₂ ratio: 1:9

Chemistry reduction example - N_2/H_2

23 species identified as redundant:

$$N_3^{+}, N_4^{+}, N(2D), N(2P), N^+,$$

 $H_2(B), N_2(a'), NH^+, H_2(a), N_2(C),$
 $H^+, N_2(B), N_2(A), H_2(v3), N_2(v8),$
 $N_2(v7), N_2(v6), N_2H^+, N_2(v5),$
 $N_2^{+}, N_2(v4), N_2(v3), N_2(v2)$

 $r_{\tilde{E}}^{0}$ r_{\tilde

1020

Species: $42 \rightarrow 19$

Global model of plasma

Quantemol

Quant*e*mol 🍄

Species ranking

Direct interaction coefficients w

- Based on the DRG theory [4]
- $w(u,v) = \frac{\sum_{j=1}^{N_{\rm R}} |a_{vj}R_j\delta_u^j|}{\sum_{j=1}^{N_{\rm R}} |a_{vj}R_j|}$

Indirect coupling coefficients W

- Based on Dijkstra's "shortest path" graph search algorithm [5]
- Searching for the path minimizing $\sum (1/w)$
- $W = \sum W$

Species ranking

Resulting species hierarchy reflects how each species is important to model the collective set of *species of interest*

Quant*e*mol 🌮

Species-oriented ranking-based reduction method

Reduction conditions

It is important to capture a range of conditions in the chemistry set reduction

Quant*e*mol 🌮

Thank you for your attention.

Quant*e*mol 🏵

For people interested in details, check out the paper accepted in PSST:

Fast species ranking for iterative species–oriented skeletal reduction of chemistry sets

https://doi.org/10.1088/1361-6595/abcd53