FROM QDB TO FEATURE PROFILING

Dr. Ade Ayilaran 06/09/2018

Understanding the workflow in a typical plasma physics related investigation

Choosing a Chemistry and Application using QDB

www.quantemolDB.com

Rating	ID	Mixture	Reactions	
★★★☆ ☆	C3	N_2/H_2 chemistry	196	
★★★☆ ☆	C4	Ar/H ₂ chemistry	96	
★★☆☆☆	C5	O_2/H_2 chemistry	141	
★★★☆ ☆	C6	SF_6/O_2 chemistry	190	
★★★☆ ☆	C7	CF_4/O_2 chemistry	221	
<mark>★★★★</mark> ☆	C8	SF ₆ chemistry	84	
	C9	CF ₄ chemistry	110	
★★★☆ ☆	C10	$CF_4/O_2/H_2/N_2$ chemistry	396	
<u>★</u> ★☆☆☆	C11	C ₄ F ₈ chemistry	197	
<u>★</u> ★☆☆☆	C13	SiH ₄ chemistry	78	
★★☆☆☆	C14	SiH_4/NH_3 chemistry	99	
★★★☆ ☆	C15	Ar/O_2 chemistry	69	
★★★☆☆	C16	$Ar/O_2/C_4F_8$ chemistry	414	
******	C17	$SiH_4/Ar/O_2$ chemistry	218	
******	C18	Ar/Cu chemistry	43	
★★★☆☆	C19	$Cl_2/O_2/Ar$ chemistry	75	
Application of interact. Etchin-				

Application of interest: Etching Pressure range: 1 – 30 mTorr Power range: ~ 1000 W

What about more Novel Chemistries?

- Ab initio methods to calculate electron scattering; Elastic scattering, Electronic excitation, Quenching, Rotational excitation, Electron impact ionization and more!
- The Dissociative Electron Attachment mechanism can be modelled and cross-sections calculated.
- Branching ratios for neutral dissociation and ionization

J. R. Hamilton et al 2017, "Calculated cross sections for electron collisions with NF3, NF2 and NF with applications to remote plasma sources" Plasma Sources Sci. Technol. 26 065010

Chemistry Reduction

Πlasma-R modelling using Arrhenius Coefficients

$$R = AT_e^{\ n} e^{-\frac{c}{T_e}}$$

Pressure: 10 mTorr CF_3^- removedPower: 1000 W F_2^+ removed

Species	Reduced Set	Full Set
CF4	1.47E+20 m ⁻³	1.46E+20 m ⁻³
F-	1.98E+16 m ⁻³	2.14E+16 m ⁻³
CF ₃	4.41E+19 m ⁻³	4.45E+19 m ⁻³
F	1.60E+20 m ⁻³	1.62E+20 m ⁻³
CF ₂	3.20E+19 m ⁻³	3.22E+19 m ⁻³
CF ₃ +	3.05E+17 m ⁻³	3.02E+17 m ⁻³
F+	8.71E+15 m ⁻³	8.81E+15 m ⁻³
CF ₂ +	1.99E+17 m ⁻³	2.01E+17 m ⁻³
F ₂	2.55E+18 m ⁻³	2.58E+18 m ⁻³
CF+	8.60E+16 m ⁻³	8.63E+16 m ⁻³
CF	1.24E+19 m ⁻³	1.25E+19 m ⁻³
С	4.80E+18 m ⁻³	4.87E+18 m ⁻³
F*	2.39E+15 m ⁻³	3.80E+15 m ⁻³
C+	5.98E+15 m ⁻³	6.04E+15 m ⁻³
T	3.29 eV	3.29 eV
ne	5.85E+17 m ⁻³	5.84E+17 m ⁻³

Reaction set reduced from 110 to 51 Much easier to integrate into reactor scale modelling!

Reaction Scheme

Charge	Species	Reactions
Positive	CF ₃ ⁺ CF ₂ ⁺ CF ⁺ F ⁺ C ⁺	Ionization Charge Exchange Charge Neutralization
Negative	e F⁻	Dissociation Charge Neutralization
Neutral	$CF_4 CF_3 CF_2 CF F$ $F^* F_2 C$	Ionization Dissociation Recombination Charge Exchange

$$F + s \rightarrow F(s)$$

$$CF_{X} + F(s) \rightarrow CF_{X+1} + s$$

$$X^{+} + s \rightarrow X^{0} + s$$

Reactor Scale Modelling Using Q-VT (HPEM)

Plasma Discharge Parameter Results

Electron Temperature 2D Distribution

Electron Density 2D Distribution

Positive Ion Density 2D Distribution

Negative Ion Density 2D Distribution

Temperature (K)

F⁺ Ion Temperature 2D Distribution

T-F+

Axial Electric Field 2D Distribution

Radial Electric Field 2D Distribution

Surface Results using the **Plasma Chemistry** Monte Carlo (PCMC) Module

1D Ion Energy Distributions

1D Ion Angle Distributions

2D Total Ion Angle/Energy Distribution

Total Ion Flux to the Wafer

Feature Profile Modelling using the Monte Carlo Feature Profile Modeller (MCFPM)

Etch Profile Obtained from Reactor Simulation Output

x (um)

Variation of F:CF Ratio

Variation of Energy Range

Variation of Angular Spread

Quantemol *

Further Profile Modelling

All rights reserved © Quantemol Ltd

Quantemo 🏵

Theoretically, can have the opportunity to first run the MCFPM to look for favourable fluxes and distributions and then use the QVT (HPEM) reactor model to find the parameter settings yielding these parameters

Conclusions

- The work flow of innovation and progress in plasma physics should aim to connect the plasma behaviour to the final substrate
- This can be done in a modular fashion; using separate but relevant tools to tackle specific parts of the whole problem
 - Breaking a problem down into its constituents!
- At each step, full control over the evolution of the problem and its solution is enabled by modelling techniques
- More complex problems such as chemical vapour deposition, the study of different discharges such as ECR's, sputtering deposition of multi-compound substrates can be tackled this way
- Experts at **Quantemol Ltd** are able to provide a step by step investigation of many physical processes by using a wide variety of techniques as shown

